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Abstract

Improved data collection capabilities and increased computational power

have led to global observations being collected at an ever increasing pace,

and global simulation models generated at an ever increasing resolution.

As a result, the atmospheric sciences are a rich source of high-dimensional

datasets. In this paper, we describe the use of principal component anal-

ysis and independent component analysis as two ways of reducing the

dimension of climate data sets. We show how these techniques can be

used to separate effects of volcanic eruptions and ENSO variations from

global temperatures.

1 Introduction

Understanding changes in the global climate is a challenging scientific problem.
Research groups around the world have been developing different models in order
to characterize accurately the different processes involved and their interactions.
With increased computational resources, the complexities of the resulting mod-
els and the quantity of the output data have also increased dramatically. To
advance our scientific understanding, we need data analysis techniques that can
keep up with this information flow.

One of the problems in the atmospheric sciences is to identify the main
sources of variability in the climate and to decompose the data into the contri-
butions of the different sources. Such a decomposition would enable scientists
to compare directly the predictions based on different simulation models and
also assess the effect of human contributions on the global climate. For exam-
ple, volcano eruptions and El Niño and Southern Oscillation (ENSO) variations
both influence global temperatures. Recent eruptions of the El Chicón and Mt.
Pinatubo volcanoes temporally coincided with large ENSO events, which makes
the separation of the volcano effect from the ENSO effect difficult [5].
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Figure 1: January 1979 raw temperatures (Kelvin) on the 144 longitudes by
73 latitudes spatial grid for pressure level 1000 hPa.

Principal component analysis (PCA) is a dimension-reduction method that
can be applied in various contexts in the atmospheric sciences [4]. Given a
high-dimensional data set, PCA seeks orthogonal linear projections in a lower
dimensional space with largest variance. Independent component analysis (ICA)
[2] is a related technique that seeks independent linear projections.

We investigate PCA and ICA as two techniques to reduce the dimension of
global temperature series and to identify the main sources of variability. Using
reanalysis data from computer simulations, we illustrate these methods and
demonstrate their usefulness.

2 Description of the Data

We conducted this study using monthly mean temperature reanalysis data [3]
from the National Centers for Environmental Prediction (NCEP). The data is on
a 144×73 longitude-by-latitude grid, on 17 vertical pressure levels ranging from
10000 hPa close to the surface of the earth to 10 hPa at the highest elevation.
It spans 264 months, from January 1979 to December 2000. Figure 1 displays
the raw temperatures for January 1979 on the 144 × 73 latitude by longitude
grid at the 1000 hPa pressure level.

Since we expected the ENSO and volcano signals to have a strong latitudinal
dependence, we performed our analyses on zonally averaged data. At a given
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month and level, we first calculated the 73 zonal means over the 144 longitudes.
Next, following standard practices in the atmospheric sciences [4], we removed
the seasonal variation and centered the data as follows. For each month, we
replaced the values at each of the 73× 17(= 1241) latitude-by-level grid points
by subtracting their corresponding monthly means over the entire 22-year pe-
riod. The resulting time-centered values are referred to as anomalies in the
atmospheric sciences literature.

Next, we performed PCA and ICA on an n = 264 by p = 1241 time-by-space
dimension anomaly data set Zn×p. This data set was first weighted appropri-
ately to account for the unequal spatial grid sizes and altitude bands as shown
in Figure 2. The latitude weight in Figure 2 (a) is largest at the equator and
decreases smoothly to zero toward the poles. The pressure level weights in Fig-
ure 2 (b) account for the unequal altitude bands in the data. For example, the
width of the fourth altitude band is largest, so that its corresponding weight is
also the largest. The combined weights in Figure 2 (c) are the products of the
corresponding latitude and level weights. Figure 3 displays the January 1979
anomaly temperatures after the weights have been applied to the time-centered
zonally averaged data.

3 Analysis Results with PCA

The PCA technique seeks linear combinations of the data with maximal vari-
ance. Given the zonal anomaly dataset Zn×p of dimension n = 264 months at
p = 1241 spatial grid points, let

Sp×p = Z
′

p×nZn×p (1)

denote the state-space scatter matrix [4], with Z
′ denoting the transpose of the

matrix Z. The eigenvalue decomposition of S provides the eigenvector matrix
Ep×p and the eigenvalue matrix Dp×p such that

Sp×p = Ep×pDp×pE
′

p×p, (2)

where E is orthonormal, E′E = EE
′ = Ip×p, and D is diagonal, D = diag(d1, . . . , dp)

with d1 ≥ d2 . . . ≥ dp. To make the eigenvectors unique, we adopt the con-
vention that the first non-zero term in each of the vectors is positive. Only
r = rank(Zn×p) eigenvectors are well defined. In our case, since n < p, and
the anomalies at each spatial grid sum to zero over time, r = n − 1. The
corresponding state-space principal components are

An×p = Zn×pEp×p. (3)

Since the eigenvalue decomposition of the p×p state-space scatter matrix S in
Eq. (2) is computationally expensive, we can apply the following computational
shortcut [4] based on the eigenvalue decomposition of the smaller dimensional
n× n sample-space scatter matrix

Tn×n = Zn×pZ
′

p×n. (4)
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Figure 2: Weights for the zonally averaged data. (a) The 73 latitude weights
sum to 73. (b) The 17 pressure level weights sum to 17. (c) The 73 × 17
combined latitude by pressure level weights sum to 1241.
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Figure 3: January 1979 zonal anomaly temperatures on the 17 pressure levels.

Let
Tn×n = Fn×nMn×nF

′

n×n, (5)

denote its associated eigenvalue decomposition, with F orthonormal, that is,
F
′
F = FF

′ = In×n, and M diagonal, M = diag(m1, . . . ,mn) with m1 ≥
m2 . . . ≥ mn. The sample-space principal components are given by

Bp×n = Z
′

p×nFn×n. (6)

It is easy to show [4] that the first r state-space eigenvectors in E can be obtained
from the sample-space principal components of B by the following transforma-
tion

Êi,j = Bi,j/
√
mj , i = 1, . . . , p; j = 1, . . . , r. (7)

Figure 4 presents the first six state-space eigenvectors, that is, the first six
columns of Ep×p, re-mapped to the 73 × 17 latitude-by-pressure level spatial
grid. Figure 5 displays the corresponding first six principal component time
series, which are the first six columns of An×p.

The patterns in the first eigenvector and corresponding principal component
suggest characteristics associated with ENSO variations. To investigate this
further, we consider the first state space PC time series (scaled) along with the
corresponding Niño 3.4 index obtained from NCEP as shown in Figure 6. The
Niño 3.4 index measures the monthly sea surface temperature deviation from
its long-term mean averaged over the Niño 3.4 region (5N-5S, 120-170W). It is
a standard index used to monitor ENSO events. If its 5-month running average
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Figure 4: First 6 state space eigenvectors.

exceeds +0.4 (-0.4) degrees Celsius, it is considered an El Niño (La Niña) event.
The correlation coefficient of the two series in Figure 6 is equal to 0.4940. The
plots indicate that the two series follow a similar pattern, but they are shifted
relative to each other. The locations of the three major peaks suggest that we
can increase the correlation between the two series by shifting the PC series a
few months back. Indeed, lagging the PC series by one month increases the cor-
relation coefficient to cor(1) = 0.6059. The correlation increases monotonically
up until the lag is five months, cor(2)=0.6689, cor(3)=0.7074, cor(4)=0.7186,
cor(5)=0.7227, then it starts to decline monotonically, cor(6)=0.6954. Figure 7
presents the PC series shifted back 5 months along with the Niño region 3.4
index.

The PCA decomposition can be used as an effective dimension reduction
tool. The original anomaly data Zn×p can be perfectly reconstructed from the
p eigenvectors as

Zn×p = Zn×pEp×pE
′

p×p. (8)

Considering only the first k eigenvectors, the reconstruction becomes

Ẑ
(k)
n×p = Zn×pEp×kE

′

k×p. (9)

The kth cumulative sum of the eigenvalues normalized by the total sum of the
eigenvalues defined as

λ(k) =

∑k

i=1 di∑p

i=1 di

, (10)
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Figure 5: First 6 state space PC time series.
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Figure 6: First state space PC time series (scaled), and Niño region 3.4 sea
surface temperature anomaly series. Correlation coefficient is 0.49.
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Figure 7: First state space PC time series (scaled) with a five month lag, and
Niño region 3.4 sea surface temperature anomaly series. Correlation coefficient
is 0.73.
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k λ(k) k λ(k)
1 0.2033 22 0.9003
2 0.3527 35 0.9501
3 0.4390 50 0.9738
4 0.5057 79 0.9901
5 0.5660 100 0.9946
6 0.6212 150 0.9986
7 0.6626 200 0.9997
8 0.7006 216 0.9999
9 0.7361 234 1.0000
10 0.7645 1241 1.0000

Table 1: Percent of the total variation explained λ(k) by first k principal com-
ponents.

indicates how much of the variation is explained by the first k, k ≤ p, compo-
nents. Table 1 shows the percent of variation explained for selected values of k.

Figure 8 (a) shows the original anomaly data for January 1979. Based on the
values in Table 1, the first k=5 principal components explain 57% of variance.
Figure 8 (b) illustrates the approximation of the anomaly data using k = 5
in Eq. (9). The approximation discerns a main cold pattern around the 50
degree latitude line over the first eight or so levels, another less pronounced
negative region extending from latitudes -20 to 20 over levels four to ten, and
a warm pattern around the same latitude band, extending over pressure levels
eleven to fourteen. Some of the overall features in the original data are already
apparent in this crude approximation, but many important details are missing.
Figure 8 (c) displays the reconstruction obtained by using the first k = 10
principal components, accounting for 76% of the total variance in the data.
As we increase the number of principal components used in the reconstruction,
the quality of the approximation improves. Figures 8 (d), (e) and (c) present
the corresponding results for k = 22, 35 and 79, accounting for 90%, 95%
and 99% of the variation, respectively. As the last panel indicates, using 79
eigenvectors from the total of 1241 provides an excellent representation the data.
The information in the original high-dimensional data can be reconstructed
without significant loss of accuracy from the lower-dimensional approximation.

4 Analysis Results with ICA

Given a high-dimensional dataset, ICA seeks linear projections that are mutu-
ally independent. The simplest ICA model [2] assumes that the observed signal
Zn×p is a linear mixture of the unobservable independent sources Cn×p, with
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Figure 8: Successive PC approximations. (a) Original January 1979 anomaly
data. (b) Approximation based on the first k=5 PCs. (c) Approximation based
on the first k=10 PCs. (d) Approximation based on the first k=22 PCs. (e)
Approximation based on the first k=35 PCs. (f) Approximation based on the
first k=79 PCs.
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Figure 9: Six independent component bases obtained from the full-dimensional
anomaly data.

the mixing matrix Mn×n,

Zn×p = Mn×n Cn×p. (11)

ICA methods use the observations to estimate the mixing matrix and the
independent components by first specifying a measure of independence, and
then providing an algorithm to optimize that measure of independence. There
are several different variants of ICA, depending on the independence measure
and optimization method. Example include the FastICA and the maximum
likelihood based gradient ascent approaches [2].

PCA can be considered a special case of ICA where the optimization criteria
maximizes the variance, with the constraint that the resulting estimates be
orthonormal. Note that for Gaussian signals, orthogonality is equivalent to
independence, and ICA only makes sense for non-Gaussian signals.

If the physical processes contributing to the overall climate are non-Gaussian,
independent, mixed in a linear fashion, then we can expect simple ICA methods
to perform better than the PCA in separating the underlying sources.

Figure 9 shows the first six independent component estimates with the Fas-
tICA method applied to the Zn×p anomaly data. The resulting IC estimates
are very localized spatially and are not interpretable scientifically in terms of
atmospheric processes. The large spikes are in fact artifacts due to over-learning
in the ICA estimation [2]. Estimating n independent components, along with
the mixing matrix as well, from only n samples is statistically impossible since
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there are more parameters to estimate than available observations. We do have
n samples of the p-dimensional signal, but we do not expect to have n truly
independent component sources.

Instead of working with the full high-dimensional anomaly data, we explore
ICA on reduced dimensional representations of the data. Since there are only
a limited number of atmospheric processes, before applying ICA we first need
to reduce the data to k dimensions, where k is the number of independent
components sought. The PCA results in Section 3 indicate that the first k = 22
PCs explain 90% of the variance. So, we applied ICA to the anomaly data of
reduced dimension, as described by the first k = 22 principal components. Since
the original anomalies are linear combinations of the PCs, we can easily obtain
the IC coefficients corresponding to the original data from the IC coefficients
obtained for the PCs.

Let the rows of Ck×p denote the k independent component estimates ob-
tained by applying ICA to the first k = 22 eigenvectors of the scatter matrix
Sp×p in Eq. (2)

E
′

k×p = Mk×k Ck×p. (12)

Combining the results in Eq. (12) with the decomposition in Eq. (9), the original
anomaly data can be written in terms of the estimated independent components
as

Ẑ
(k)
n×p = Zn×p Ep×k Mk×k Ck×p = Nn×k Ck×p, (13)

where Nn×k = Zn×p Ep×k Mk×k is the mixing matrix corresponding to the full-
dimensional anomaly data. Figure 10 shows six of the k resulting independent
basis images Ck×p.

Figure 11 shows the six projections of the anomaly data Zn×p onto the

independent components in Figure 10 as six columns of the matrix Zn×pC
′

p×k,

where C
′

p×k denotes the transpose of Ck×p. The resulting time series are the
analogues of the state space PC time series in Figure 5.

Figure 12 presents the time series from the last panel in Figure 11 along with
the Niño 3.4 index. The correlation between the two series is 0.5788, slightly
higher than the corresponding value between the best PC time series and the
Niño 3.4 index. Shifting the IC time series back a few months increases the
value of the correlation coefficient as follows: corr(1)=0.6895, corr(2)=0.7410,
corr(3)=0.7654, corr(4)=0.7587, then decreases monotonically further. Fig-
ure 13 presents the IC time series shifted back by 3 months, along with the
Niño region 3.4 index.

In addition to applying ICA to the first k eigenvectors, we also experimented
with an alternative ICA model based on the first k state-space principal compo-
nents in Eq. (3). This implementation, suggested in [1], leads to a decomposition
of the form

Ẑ
(k)
n×p = Dn×kBk×p, (14)

where the independent components are the coefficients Dn×k that linearly com-
bine the basis images Bk×p. The resulting basis images showed similar char-
acteristics to the basis images obtained by PCA. The highest correlation value
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Figure 10: Six independent component bases obtained from the first k=22 eigen-
vectors of the anomaly data scatter matrix.

between the zonal anomaly data projected onto the bases in Eq. (14) and the
Niño 3.4 index was 0.6031, achieved at one of the series lagged by five months.
The previous two methods, PCA and ICA after dimension reduction with PCA,
resulted in slightly higher correlations.

5 Summary

In this paper, we described two different techniques to reduce the dimension
of climate data sets. The first few principal components in PCA provide a
compact representation of the data, without significant loss of information. In
addition, they also identify the main modes of variation in the data. The first
principal component accounts for 20% of the total variation, and it represents an
ENSO component. We also reported results with the more novel ICA method.
Using ICA alone on the data proved to be problematic, but our initial results
on combining ICA with PCA are promising. The simple ICA model used in
combination with PCA for dimension reduction resulted in a superior ENSO
signal estimate than PCA alone.

Our future work includes interpreting the remaining PC and IC estimates
in terms of atmospheric processes; determining the sensitivity of the results
to k, the number of components to estimate; incorporating constraints on the
shapes of the sought components (for example, large volcano eruptions can only
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Figure 11: 6 state space IC time series.
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Figure 12: State space IC time series (scaled), and Niño region 3.4 index. Cor-
relation coefficient is 0.58.
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Figure 13: State space IC time series (scaled) with a three month lag, and Niño
region 3.4 index. Correlation coefficient is 0.76.

15



decrease the temperature, but not increase it); and investigating possible non-
linearities in the mixing process.
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